

VERSION 1.2

AT

In this chapter

01	9	Introduction	3
02	0	Design principles	5
		2.1 Water sensitive design (WSD) or Integrated Stormwater Management (ISM)	5
		2.2 Integration of drainage	6
		2.3 Tiered objectives for stormwater management design in road reserves	7
		2.4 Major/minor drainage	
03	4	Surface water management	
04	0	Stormwater management devices	
		4.1 Treatment /Management Options Tool Box	15
		4.2 Bio-retention swales, rain gardens	
		4.3 Ponds and wetlands	16
		4.4 Swales and vegetated swales	17
		4.5 Soakage pits	17
		4.6 Proprietary devices	17
05	0	Kerbs and channels	18
06	0	Catchpits	19
		6.1 Catchpit location	
		6.2 Catchpit design	
		6.3 Catchpit approved types	
		6.4 Catchpit selection criteria	
		6.5 Catchpit inlet selection	
		6.6 Catchpit leads	
07	0	Manholes	25
80	0	Rural road drainage	25
09	0	Subsoil drains	
10	0	Minor culverts	
11	0	Special areas	29

01

PURPOSE

SCOPE

TERMINOLOGY

This chapter gives guidance for the design of drainage in the road reserve. It specifies limitations on design choices to achieve consistency across the region, while catering for local conditions. It aims to promote efficiency, effectiveness and economy of capital investment and operational management water sensitive design.

The situations covered include:

- road reserves.

• Subsurface drainage of roads.

• Diversion and culverting of watercourses within road reserves.

Road refers to the legal road, i.e. from boundary to boundary, as defined in the Auckland Unitary Plan.

Water Sensitive Design (WSD) has been renamed "Integrated Stormwater Management" (or ISM) in the AUP, however WSD is still used and referred to in many associated guidelines and documents.

Other terms are defined in the Auckland Council Guideline Document: Stormwater Management Devices in the Auckland Region, GD2017/001.

Storm characteristics for design are generally expressed as the % AEP (Annual Exceedence Probability) or the ARI (Annual Return Interval). In this manual, % AEP is used, to underline the risk management basis of drainage design.

RUN-OFF CALCULATIONS

Introduction

• Drainage of surface water within road reserves.

• Collection, conveyance and treatment of run-off from roads.

• Management of stormwater discharging from land onto

• Discharge of stormwater from road reserves.

Road surface run-off calculations are required for:

• All arterial and collector roads.

• Roads with channel gradients outside the range 1.5-10%.

Roads drained to stormwater treatment systems.

• Roadways of more than 8m wide that fall to a channel.

COMPLIANCE	0	Auckland Transport (AT) manages the road assets for Auckland as a Council Controlled Organisation of Auckland Council. Except where stated otherwise in this manual, road drainage design	02	Des
		 Local Government Act (1974 and more recent updates) The Auckland Code of Practice for Land Development and Subdivision Auckland Transport: Transport Design Manual The Resource Management Act (1991) 	APPROACH	2.1 W Integr
		 Consent conditions and the Auckland Unitary Plan rules Permitted activity rules imposed by the AUP Stormwater Bylaw, Auckland Council, 2015 Guideline documents 		an inter- approac for Wate
TANDARD ENGINEERING DETAILS AND DESIGN TOOL BOX		The Tools and Details published by AT in the Engineering Design Code should be used for design and detailing. Other design tools and drawings provided by suppliers of products and systems may be used, subject to approval by AT Chief Engineer.		AT recog the effect street tr the use manage
DEPARTURES		Where any deviations from the standards are necessary, they must be clearly documented and must follow the AT Departures from Standard process.	PURPOSE	Water so use natu manage
NFORMATION SOURCES		Before designing road drainage, the following design documents and guidelines should be read:		aims to close to
		 Other sections of ATs Transport Design Manual (TDM). AT Bioretention Design Guide, 2021. AT Swale Design Guide, 2021. 		This is a • Prom
		 AT Swale Design Guide, 2021. AT Bioretention Planting Guide, 2021. 		Prote
		 Water Sensitive Design for Stormwater, Auckland Council Guideline Document GD2015/004. 		• Utilis storn
		 Stormwater Management Devices in the Auckland Region, Auckland Council Guideline Document GD2017/001. 		All road line with
		 Auckland Council Stormwater Code of Practice (AC SW CoP). Green Infrastructure: Auckland Council CoP for Land Development and Subdivision, Chapter 7, 2016. 	DESIGN PRINCIPLES	The imp reserve
		• Watercare Services Wastewater Code of Practice (WSL WW COP), where required in combined sewer catchments.		• Road and c
		 Austroads Guide to Road Design Part 5, Part 5A and Part 5B. TR2013 040 Stormwater Disposal via Soakage in the Auckland Region, Auckland Council, 2013. 		The in possi consi
		 TR2009/084 Fish Passage in the Auckland Region, Auckland Regional Council, 2009. TP131 Fish Passage Guidelines for Auckland Region, 		 Storn shoul possi
		 Auckland Regional Council, 2000. Coastal inundation by storm-tides and waves in the Auckland region. Auckland Council technical report. TR2016/017 		and v desig
		 Coastal Hazards and Climate Change, Ministry for the Environment, 2017. 		• Earth align
		 AP-R481-15 Safety Provisions for Floodways over Roads (Austroads, 2015) 		
		 Floodplain Development Manual (NSW Government, 2005) 		1

S

sign principles

/ater sensitive design (WSD) or rated Stormwater Management (ISM)

ngly supports the use of Water Sensitive Design (or ISM) es and requires road drainage designs to demonstrate -disciplinary approach to stormwater management. This ch is clearly defined and explained in detail in Guidance er Sensitive Design, GD04.

gnises the value of the street tree canopy to attenuate ects of rainfall events and reduce peak flows. Planting rees is encouraged at the time of development and of shrubs and amenity plantings to contribute to the ement of stormwater.

sensitive design seeks to protect, enhance, and ultimately ural systems and processes for enhanced stormwater ement, ecosystem services, and community outcomes. It avoid adverse effects of stormwater or manage them as the source as possible.

- achieved through:
- noting inter-disciplinary planning and design.
- ecting the values and functions of natural ecosystems.
- sing natural systems and processes for mwater management.
- I construction and improvement should be designed in water sensitive design principles.
- plications for Water Sensitive Design in the road include:
- l layouts should be designed to retain existing landforms drainage patterns where possible.
- impervious surface ratio should be kept as low as ible within the road reserve and on adjoining land, istent with the road use.
- mwater management systems and treatment suites Ild reflect natural water management systems as far as ible. Methods such as groundwater recharge, tree canopy vegetated strips should be used in conjunction with gned treatment trains.
- hworks should be minimised and design choices should with sustainability and economic objectives.

	2.2 Integration of drainage	KERB DISCHARGES
ENVIRONMENT	Following WSD principles, road drainage management should be integrated with that of the surrounding area. Where it is economical and effective to treat road run-off in conjunction with stormwater from a developed area, shared public stormwater facilities may be used with the approval of Healthy Waters, AT and AC Operations teams. However, separate treatments will be necessary if:	PUBLIC RETICULATION
	 The requirements for treatment of road run-off differ significantly from those for developed land, or Where existing treatment is not of appropriate standard for the road run-off. 	
	Greenfield developments should consider intensified or clustered development to minimise land disturbance and earthworks, to protect and enhance the natural environment.	SPECIAL AREAS
PLANS AND CONSENTS	Treatment should fit with watershed catchment management plans (CMP) or network discharge consents (NDC) where these are in place, or with the requirements of a resource consent for stormwater discharge. This will also help determine the feasibility of integrated management.	
CATCHMENT PLANNING	 Consult with Auckland Council Healthy Waters early on if: Existing road run-off is managed under a network discharge consent and an alteration in road drainage is proposed. A new connection increases the peak flow to an existing drainage network that discharges in to the public stormwater network. New road design or improvement to an existing road is proposed that is not covered by an existing current discharge consent. Where substantial upstream or downstream flooding has been identified. A Stormwater or Catchment Management Plan exists that identifies issues relevant to road design. 	DESIGN CONSDERATIONS
	Auckland Council Healthy Waters can be contacted at: HWdevelopment@aucklandcouncil.govt.nz	
CONNECTING PRIVATE DRAINAGE	Where approval is sought to connect private drainage discharge to an existing Auckland Transport road drainage asset (e.g. pipeline, manhole or treatment device), the Auckland Transport asset will have to be vested as an Auckland Council public drain asset. The condition of the asset must be investigated. The applicant may have to bear the cost of the investigation, as well as any reasonable cost of bringing the asset to an acceptable condition.	DESIGN OBJECTIVES
	Where a pipeline to be vested as public drain is located in private land in a front or side yard, provision should be made to connect road drainage from the road reserve boundary in future. In this case, an easement in favour of Auckland Council must be provided.	MANAGEMENT DESIGN
ADJOINING LAND	The catchment of run-off from land next to roads must always be considered. Flood hazard management requires that roads be integrated with land upstream and downstream, as set out in AC SW COP 4.2.8. The capacity of primary drainage of developed land may be exceeded in events less than 10% AEP due to blockage or where the existing network has been constructed to have a lower capacity.	

Probable catchment run-off needs to be calculated in accordance

with AC SW COP for road drainage design.

KERB DISCHARGES

Discharge of water from private land to the road surface is managed by Auckland Transport under Section 357(1) of the Local Government Act 1974. Any proposal to create a new discharge or to alter the flow rate of an existing approved discharge must be made through Auckland Council Regulatory for review and determination by Auckland Transport and must comply with conditions set by Auckland Transport.

Where there is a new connection or increased discharge to an existing connection, the effects of road stormwater discharge into public reticulation have to be investigated. Integration of peak flow discharges and times of concentration may be able to provide capacity management on the network.

In certain areas, the ground conditions require stormwater drainage to meet specific policies or code conditions. These include:

Soakage discharge

In these areas, road drainage must comply with the relevant policy or code requirements. As far as possible, design for road run-off should be integrated with the design for land use run-off. Where land use drainage is not being changed in a way that can be integrated with road run-off, then design for road run-off and existing land drainage may be more difficult. It is best to discuss this with the relevant consenting teams at Auckland Transport and Auckland Council early on.

Road drainage infrastructure design must show consideration of all of these factors:

2.3 Tiered objectives for stormwater management design in road reserves

ENVIRONMENTAL MANAGEMENT DESIGN

Environmental management design focuses on environmental design for everyday conditions. These designs typically cater for 90th/95th percentile 24-hr of rainfall as given in Auckland Council Stormwater Guidelines. Rainfall from most of any year should be managed through Water Sensitive Design to reflect natural processes for quality treatment, volume reduction, groundwater recharge, attenuation and dispersed discharge. Environmental objectives should be determined from unitary or regional/ district plans or network discharge consent requirements, as well as stormwater governing principles. These may be quality requirements for heavily-trafficked roads or flow management requirements for sensitive stream catchments (defined in the Auckland Unitary Plan for greenfield sites and SMAF overlays) or quality objectives for consolidated receiving environments.

- Combined sewer reticulation
- Groundwater recharge.

- Safety and effectiveness
- Environmental outcomes
- Whole-of-life cost (capital and operational).

Drainage design requires attention to a range of different objectives. For each of these objectives, the range of rainfall intensities and the appropriate design solutions may differ. The design should demonstrate how each is dealt with.

SERVICEABILITY MANAGEMENT DESIGN

Serviceability management design focuses on road safety during occasional events. Design typically caters for rainfall up to the 10% AEP design storm but varies for different road users. Rainfall run-off should be managed within the road reserve to maintain acceptable levels of service for road users, while limiting hazards and nuisance. This has to include surface water management and serviceability for walking and cycling at appropriate lower rainfall intensity. (See Section 3 below.)

Rainfall intensity and depth should be obtained according to the methods defined in AC SW COP, making use of TP108 and applying current allowance for climate change. An example showing the process can be found in GD01 - Swale design.

Serviceability criteria in Tables 1 and 2 should be met. Design objectives should be determined from the safety and service requirements set out in Austroads Guide to Road Design Part 5A.

Where the outlet of road drainage may be drowned, such as by tide levels allowing for sea level rise or other constrained discharge capacity or high hydraulic head level, backflow prevention devices may be considered in conjunction with in-pipe storage capacity.

MAJOR EVENT MANAGEMENT DESIGN

Major event management design focuses on personal safety, protection of property and survival and recovery of infrastructure for extreme events. Design typically caters for storms up to the 1% AEP, to ensure survivability or recovery of infrastructure, accessibility for emergency services and protection of personal safety and habitable or commercial property. In coastal areas the effects of sea-level rise and coastal inundation from storm surge should also be considered (including backflow protection) under this design event. See Information Sources in Section 1 for more information.

Also consider:

- Significant consequences of run-off exceeding the design peak flow.
- Greater protection for identified critical infrastructure (0.5% AEP or less).
- Effects of coastal inundation from tides and storm surge coinciding with heavy rainfall, sea-level rise or a tsunami.

Major event flow should meet criteria in Table 3. Design should follow methodologies set out in Austroads Guide to Road Design Part 5A. Rainfall and run-off should be calculated according to AC SW COP (including specified allowance for climate change).

TABLE 1 SERVICEABILITY (10% AEP) ALLOWABLE SPREAD WIDTHS AND CHANNEL FLOWS - TRAFFIC LANES

Speed environment		
≤ 70 km/h	> 70 km/h	
1.0m	0.75m	
1.5m	1.25m	
	Speed en <mark>≤ 70 km/h</mark> 1.0m 1.5m	

Where the kerbside traffic lane is greater than 3.5m, additional width (i.e. actual width of kerbside lane minus 3.5m) may be added to the allowable spreads shown above.

Where the kerbside traffic lane is less than 3.5m, deficit width (i.e. 3.5m minus actual width of kerbside lane) must be deducted from the allowable spreads shown above. Where a combined purpose lane is being utilised, e.g. a bus lane and cycle lane. at 4m wide, the maximum allowable spread is 1m depth at the kerbside should be no greater than the top of kerb, and the product of gutter flow depth by average velocity ($d_x \times V_{yy}$) should not exceed $0.4m^2/s$.

TABLE 2 SERVICEABILITY (10% AEP) ALLOWABLE SPREAD WIDTHS AND CHANNEL FLOWS - ROAD TYPES

Situation	
Arterials with sealed shoulder	Surface flows sh
Collector and local roads	At least one land on local roads sh
Arterials	There should be Where traffic lar to achieve the g trucks and buse significant prope to give a wider c
Auxiliary and turning lanes	Spread at the co be limited to 1.5 extended throug be used for spre
Pedestrians	Maximum spread points should be Maximum spread locations where 0.75m. Design rainfall ir 1.58 year ARI, te restricted to less
Cyclists	Where a road co limited to 0.5m. For a shared bic limited to 1m. Design rainfall ir ten-minute inter
On-street parking and car parks	Flow width shou

Where shoulders have been constructed, the actual flow width is in addition to the shoulder width.

Requirement

nould be confined to the shoulders.

e each way on collector roads, and at least one lane width hould be trafficable during a 10% AEP storm.

no need to change lanes during the design storm.

nes of less than 3.5m are used, it may not be practical oal of not changing lanes during the design storm when s are considered. Where commercial vehicles comprise a ortion of the traffic, consider redistribution of lane widths outer lane.

ommencement of auxiliary/turning lane tapers should om, except where cycle lanes or sealed shoulders are gh the taper. In such cases up to 1m of the cycle lane may ead allowance for the 10% AEP storm.

d from the kerb immediately upstream of pedestrian crossing e 0.5m.

d into the kerbside lane adjacent to bus stops (or other pedestrians are expected in significant numbers) should be

ntensity to use for pedestrian facilities should be the en-minute intensity, except in addition spread should be s than 1m in the 10% AEP storm at pedestrian crossing points.

ontains separate bicycle lanes, the flow spread should be

cycle and vehicle lane, the flow spread width should be

ntensity to use for on-road cyclist facilities is the 20% AEP, nsity.

Ild be restricted to 2.0m for the 50% AEP.

Situation	Requirement		
Cross carriageway flows	Flows across the carriageway, such as those occurring at superelevation changes, median breaks, T-intersections of local streets and at the ends of traffic islands, must be less than 0.005m ³ /s to reduce the risk of aquaplaning. The rainfall intensity to use for this situation should be 50mm/h. (See Section 3.)		
Local road intersections	Flows past terminating local roads must be limited to $0.030m^3/s$ for the 10% AEP storm.		
Safety: Arterial roads	Maximum flow depth x velocity $d_g \times V_{ave} = 0.3 \text{m}^2/\text{s}$.		
Safety: Kerbside	For pedestrian safety, the maximum depth at the kerbside should be no greater than the top of kerb, and the product of gutter flow depth by average velocity $d_g x V_{ave}$ should not exceed 0.4m ² /s.		
Safety: Braking areas	Water depth and width should be restricted at the approaches to traffic signals, freeway ramp gores and in other areas where braking would be expected.		
	Source: Based on Alderson (2006)		

TABLE 3 MAJOR EVENT - ROADWAY FLOW LIMITATIONS

Situation	Requirement
Where floor levels of adjacent buildings are above road level	Total flow contained within road reserve. Freeboard from peak flow level to habitable floors in accord with Building Code and unitary plan.
Where floor levels of adjacent buildings are less than 350mm above the top of the kerb, and the fall on the footpath towards the kerb is	 Greater than 100mm: Water depth must be limited to 50mm above top of kerb. Less than 100mm: Water depth must be limited to top of kerb in conjunction with a footpath profile that prevents flow from the roadway entering onto the adjacent property. In these cases, compliance with Building Code and unitary plan may require separate approvals.
Where no kerb is provided	Above depths must be measured from the channel lip level plus 100mm.
Pedestrian safety ¹	No obvious danger: $d_g \times V_{ave} \le 0.6m^2/s$. Obvious danger: $d_g \times V_{ave} \le 0.4m^2/s$.
Vehicle safety	Maximum height of energy line300mm above roadway surface for areas subject to transverse flow. The exception is specific floodway design and additional vehicle warning and protection, where $_{dg} x_{Vave} \le 0.3 \text{m}^2/\text{s}$. On-street parking is not to be permitted where overland flow exceeds $0.3 \text{m}^2/\text{s}$.

1 Obvious danger is interpreted as areas where pedestrians are directed to, or most likely to cross water paths, e.g. marked crossings and corners of intersections.

d_ = flow depth in the channel adjacent to the kerb, i.e. at the invert (m).

 V_{ave} = average velocity of the flow (m/s).

Source: Adapted from DNRW (2007a)

MINOR SYSTEM

It is intended to capture and convey run-off from frequent rainfall events to maintain road safety and avoid nuisance to road users and or impacts on adjoining land. The frequency of events for primary drainage design is generally defined by the unitary plan to be the 10% AEP design storm. Where network capacity or discharge is limited by circumstances such as existing network limitations, or tidal outfall level affected by sea level rise, a departure from standard on the return probability (AR) would be considered.

The major system, or secondary drainage, is designed for severe storm events, generally the 1% AEP design storm. This system must be designed to:

RURAL AREAS

URBAN AREAS

MAJOR SYSTEM

- Protect infrastructure from significant damage during major events.
- Limit interruption of service in line with the traffic or lifeline significance of the road.
- Allow major event stream flow to cross the line of a road without significant diversion, flooding or scour.

Urban areas also benefit from tree canopy cover which provides a further option to reduce flow rates. Tree canopy cover has a higher value in areas of low permeability and can help reduce flow rates into stormwater systems in both raingarden and tree planter pits.

The 1% AEP storm run-off should generally be contained within the road reserve, with sufficient freeboard at the boundary to limit risk of discharge towards vulnerable property. Care should be taken to avoid ponding or spread flow that may obscure hazards to road users, especially at intersections and at dropoffs from the roadway.

Flood flow should be directed to discharge from the road reserve at natural low points. Ensure that a weir discharge from road to Overland Flow Path is specifically designed.

2.4 Major/minor drainage

The minor system, or primary drainage, caters for the first two design objectives above, i.e. environmental and serviceability.

- Maintain safety for people.
- Protect infrastructure from significant damage.
- Protect habitable property from damage.
- Provide access for emergency services.
- In rural areas, the design objectives are to:

In urban areas, the design objective is to retain major event run-off within the road reserve and convey it to defined overland flow-path discharge points. To this end, roads should be laid out to facilitate control of major event run-off. Excessive flow and velocity should be avoided, and consideration must be given to momentum where the flow changes direction.

MAJOR SYSTEM WITH LIMITED CAPACITY

In some locations, such as in the central isthmus of Auckland, the topography does not provide a natural flow path that can be used to convey major run-off in surface channels. This may also occur where existing vulnerable property obstructs the flow path. In such cases, it may be necessary to provide sufficient ponding capacity for later discharge through the available means, whether primary piped system or discharge to groundwater. To alleviate such issues at the bottom of the catchment, consider the extent to which road design can contain and attenuate the concentration of overland flow.

During heavy rainfall, the inlets and pipes of the minor drainage

system may become blocked by debris. To determine the

MINOR SYSTEM **IN MAJOR EVENTS**

consequences of such a major event, the discharge flow, velocity and depth of overland flow should be checked for effects on properties on the assumption that the primary system is fully blocked. However, the effects on road users may consider discharge of 50% of the nominal inlet or pipe capacity of the primary system (whichever is smaller). This will be satisfactory, unless particular risk due to blockage is identified.

MAJOR SYSTEM -**PIPED FLOWS**

Where constraints to the road network result in surface flows exceeding safety criteria and no overland flow path discharge is available, high-capacity inlet systems may be used to reduce overland flow. Piped discharge from these devices should be kept separate from the primary piped network as far as possible, to reduce risk of blockage. The risk of debris blocking inlets should be considered.

03

Surface water management

Geometric design of roads must include consideration of surface drainage.

ROAD SAFETY

SERVICEABILITY

SURFACE MATERIAL

The prime consideration for surface drainage is road safety. High-speed roads (operating speed > 50 km/h) must be designed with regard to the potential for aquaplaning. For all roads, the effects of spray must be minimised, especially at intersections. For lower speed roads, special attention should be given to changes of direction and gradient.

The second consideration is for serviceability. Long drainage paths across paved areas may result in excessive water film, or puddling on uneven surfaces. This may be unsatisfactory for pedestrians and cyclists.

Surface materials influence the hydraulic performance of water as it flows across the surface. It is necessary to check that the surface material proposed is suitable to convey the water to the drainage points rapidly to reduce the risk of ponding and / or aquaplaning.

GRADIENTS

CROSSFALL

- a sag curve catchpit inlet, in which case the length of road channel less than 0.5% must be minimised

- Steep roads (>8%) should have maximum crossfall to shorten the drainage path to roadside collection.
- Roads with a flat grade should have sufficient crossfall to clear surface water to the road edge.
- Transitions from camber to superelevation should be developed at or away from sag and summit curves, to avoid flat areas.

OTHER GUIDES

04

CONTEXT

TREATMENT TOOL BOX

Road design for aquaplaning should follow the Austroads Guide to Road Design Part 5A Section 4. Where concentrated flow crosses a carriageway, it must be less than the maximum flow in Table 3.

Stormwater management devices

Apart from the requirements for water sensitive design set out in Section 2.1 above, drainage design for roads should also meet the requirements below.

The water sensitive design context is provided by the AC Guideline documents referred to in Section 1. AT prefers a treatment train approach with the "right device in the right location".

The preferred options for new developments and existing environments are shown in 4.1.

A treatment train approach involves combining a suite off treatment options taking road run-off from collection to discharge. Appropriate treatment may include a combination of bioretention, wetlands or other suitable practices. Treatment should generally be as close to the source as possible, and reproduce the effects of natural drainage as far as possible, while minimising the number of small separate devices and operating costs.

The treatment tool box options in some instances are complimentary but should be considered separately as well as together when completing calculations for quality and hydrology.

- Longitudinal gradients of kerbed channels must be at least 0.5%. Any length of road with a gradient less than this must have provision to avoid ponding. This can be achieved with:
- crossfall away from channel
- sheet flow discharge over the road edge, or
- a grated drain channel or combined kerb and drain block.
- Crossfall and longitudinal gradient must be considered together, to limit the length of any drainage path before water is concentrated into a channel or discharged from the paved surface.

• Avoid flat areas at intersections.

OTHER BENEFITS	Where possible, devices should provide for other design objectives such as passive amenity and biodiversity.	
OPTION SELECTION	Alternative stormwater treatment options should be compared for capital and operational costs to determine the best option in terms of life cycle costs and benefits. A template for the life- cycle calculations does not form part of the Design Manual but calculators are expected to be available through the Activiating Water Sensitive Urban Design website.	TREATMENT TOOLBOX
RETENTION DEVICE RISKS	 Any devices that store water on or below the ground surface close to roads for an extended period must be designed with regard to: structural support for traffic loads, protection from infiltration into pavement formation, and geotechnical stability hazards. 	
INFILTRATION	Infiltration to ground may be appropriate in some locations, while tanking will be necessary in others. Always consider whether the device might interact with subsoil drains. Soil testing should be used to determine what infiltration capacity is available.	
CONSTRUCTION	Devices constructed close to live load areas (roadways, paved areas, vehicle crossings) may require structural support which must be designed to carry appropriate horizontal or vertical loads. Precast or in-situ concrete walls or cells may be used where necessary.	
	Underdrains should generally be not less than 100 mm Internal Diameter rigid, smooth-bore pipes, perforated to inlet from coarse drainage material. Bends, junctions and inspection ports should be arranged to enable CCTV inspection, flushing and jetting.	
	Flexible perforated pipe should only be used for underdrains to tree planting pits or as subsoil drains.	
	Geotextile cloth should only be used for mudstop at the perimeter of drainage devices constructed on clay or similar subgrade, not between elements of bio-retention devices. Filter socks should only be installed on perforated pipes used for subsoil drainage in inert materials.	
	Other uses of geotextiles in devices must be approved by AT Chief Engineer.	
OPERATION & MAINTENANCE MANUAL	Design of treatment devices or a treatment suite must include a draft operation and maintenance manual as per the Auckland Council Stormwater Guidelines. This should include a brief statement of the function of the device or suite in its local stormwater management context. The manual must include a schedule of inspections, cyclic and planned maintenance operations, which must be used to estimate operational costs for the selected option. The completed O&M manual for all treatment devices must be provided to AT for all assets to be vested.	

TABLE 4

4.1 Treatment /Management Options Tool Box

AT supports the treatment and management of stormwater runoff from the road area as part of an integrated stormwater approach for the area. This stormwater approach should be worked through with AT early in the design process so that appropriate outcomes are achieved. While there are a number of treatment and management options available, not all designs are necessarily appropriate when located within the road. Designers must consider maintenance requirements when selecting treatment/management options.

AT acceptance of Treatment and management options for existing and redeveloped road runoff or road runoff from new road surfaces have been grouped into three Tiers:

• Tier 1 (T1): AT will accept these devices/design options although most will have design constraints to ensure the right size and right place in the corridor.

• Tier 2 (T2): AT will accept these options on a case by case basis only. Written approval from AT is required at design stage to confirm acceptance.

• Tier 3 (T3): AT will only accept these options by exception - departure from standard approval is required during design stage.

Treatment /Management Option	New Roads	Existing Roads
Pond	Т3	Т3
Wetland	T2	T2
Swale /Vegetated swale*	T1*	T1*
Site specific Bioretention (lined/unlined)*	T1	T1
Soakage pits	T1	T1
Dry ponds	T2	T2
Proprietary Devices [#]	T2#	T2#
GPTs/Catchpit filters/filter screens#	T2#	T2#

* This would be T2, if private lots are to discharge to swale.

* Bioretention devices in this table do not include pre-cast concrete box rain gardens, which are considered a proprietary device.

[#] All proprietary devices must have written approval from AT prior to design acceptance. The use of pre-cast concrete boxes for rain gardens require a departure from standard approval.

	D.	the second s			
4		-retention	swales	rain	dardens
			511 ai C 5	,	garacito

	nı.		\sim	
	~	INI.		
-	IN I		~	
	•••	•••	•	

Bio-retention devices can provide water quality treatment and retention (infiltration to ground). The use of proprietary raingardens solely for detention is not acceptable in the road corridor.

AT supports the use of raingardens for water treatment and retention. Raingardens should be designed to maximise the size of each device. Drainage design should be considered at a subcatchment level and seek to reduce the number of smaller devices in favour of fewer, larger raingardens.

The minimum surface area of a raingarden designed for the road corridor is 20m2. Devices smaller than this must seek departure from standard approval.

AT will not accept multiple precast proprietary devices adjacent to each other in series. Where more than one precast unit is required, then a larger raingarden should be designed.

OTHER GUIDES See also:

- Design of treatment devices should be in accordance with AT Bioretention and Swale Design Guides.
- Vegetation plans should be in accordance with AT Bioretention and Swale Design Guides.
- Where the design requires a drop-off from the roadway or footpath into a device, kerbing may be required as per Section 5 below.
- Bioretention devices will not be considered for slopes of >5% unless safety issues are addressed. See AT Bioretention Design Guide for more information.

Constructed ponds and wetlands are generally placed in the lower areas of a catchment, as a final stage of the treatment suite. Where

these devices are accepting runoff from areas in addition to the road

A pond that has a standing pool of water with a permanent water

corridor, they are typically vested to Auckland Council.

4.3 Ponds and wetlands

landscape features.

APPLICATION

WET POND

DRY POND

WETLANDS

level (PWL). A dry pond (also called a detention basin) temporarily stores stormwater runoff to control the peak rate of discharges without having a standing pool of water. Due to the fully emptying nature of a dry pond, they do not provide full water quality management and pre-treatment of runoff entering these areas is required. These areas can usually be incorporated with other amenity and

AT supports the use of wetlands for treatment and retention/ detention. Designers considering wetlands for retention should seek advice from Auckland Transport Chief Engineer early in the design process.

While ponds are a useful treatment device for allowing settlement of suspended sediment, the land area required means that ponds are typically not suitable for treatment of stormwater runoff within the

road. While AT will consider accepting a pond as a vested asset in the road, this is by exception, only where alternative treatment options are not available and prior approval must be obtained from the Auckland Transport Chief Engineer.

Dry ponds may be suitable on paper roads or in drainage reserves as a passive amenity feature. Designers considering these options should seek advice from Auckland Transport Chief Engineer early in the design process.

APPLICATION

AT supports the use of swales for conveyance and treatment (where designed) however, these devices require sufficient width and length to function well.

Check dams may be required to limit the gradient of the base of the swale to 5% or less. Swales will not normally be suitable where the road gradient exceeds 8%.

They should not be used in residential local roads with multiple vehicles crossings, or other roads where berm parking is likely to occur. Swales with approved vegetation other than grass may be acceptable in such roads.

SERVICE TRENCHES

OTHER GUIDES

 AT Swale Design Guide and AT Biorientation Planting Guide and • Section 9 below.

4.5 Soakage pits

APPLICATION

4.6 Proprietary devices

APPLICATION

Proprietary devices will be considered by AT on a case by case basis for use within an existing drainage network. Such devices typically require specialised maintenance and must be specifically approved in writing by AT before being used within road designs. Such devices may include:

Note: Letters issued by Auckland Council approving the use of proprietary devices does NOT apply to their use in the road corridor.

OTHER INFORMATION See Information Sources in Section 1 for design information.

4.4 Swales and vegetated swales

Where services are to be laid under swales the service excavation trench including tool working clearance must not affect any subsoil collector drain, and access pits and covers must not obstruct the designed waterway.

Swale design must comply with:

Soakage pits systems have performance specifications that are limited to only a few areas within the Auckland region. Design standards are available in TR2013 040 referenced in Section 1.

• Gross pollutant traps and catchpit filters/screens,

Pre-cast concrete boxes/rain gardens,

Manhole or vault-based filter systems, and

• Other manufactured products.

05 Kerbs and channels

APPLICATION

PLANS

KERB TYPES

KERB DISCHARGE PIPES

INTERRUPTIONS

PROTECTION FOR DROP-OFF FROM FOOTPATH

> PAVED AREAS WITHOUT KERB

Kerbing may be required for surface water control:

- As part of a surface water channel for collection and conveyance to an offlet, a catchpit or a treatment device such as a rain garden or filter.
- On all roads where the channel gradient exceeds 8%.
- On all roads where the channel gradient exceeds 5%, unless a side drain system is provided that collects surface water effectively along its length.
- To contain overland flow and ponding within the roadway for the protection of property or the safety of footpath users.
- Roads with side drains/water tables where the road passes through a cutting and the side drain is interrupted.

The surface water kerb and channel profile should be selected from one of the details in SED KC0001 - KC0030. Selection must suit both the streetscape design and the drainage design. It must be able to collect and convey the minor design storm run-off to the point of discharge, and meet the criteria in Section 2.3 for major event drainage.

For drainage systems using catchpits as per Section 6, kerb types 1 or 3 will normally be suitable. Other kerb types may require transition over at least 600mm between the kerb and a catchpit lintel. For further design information see the Urban and Rural Roadway Design document of the Engineering Design Code.

Where existing or new kerb discharges are present, they are to be constructed or renewed as shown in the Standard Engineering Details.

Where kerbing is required for vehicle containment or the safety of path users, and drainage goes to an extended device such as vegetated strip, swale or rain garden, the kerbing may be interrupted at intervals to allow drainage. For vehicle kerbing, interruptions must normally not exceed 300mm in length and be at least 600mm apart, with inlet capacity designed as a weir. The operating speed environment should be 60km/h or less.

For footpaths, protection must be provided where there is a dropoff or steep batter adjacent to the footpath edge. An upstand kerb must not be less than 75mm, with short interruptions for inlet. Where edge rails are used, the bottom rail must have a gap of 75mm or less below the rail. Alternatively, drop-off can be limited to no more than 25mm to a paved margin 500mm wide, or a side slope not exceeding 1:3 within a rain garden.

Where an upstand kerb is not provided in paved areas, a concrete drainage channel must be provided. The standard concrete V-channel profile should be used. A drainage channel should usually be at the left and/or right side of all traffic lanes. One may be located between traffic lanes and parking or other paved areas that fall towards the roadway or, in special circumstances where kerb containment is not required, between the roadway and the path.

FLOW LIMITATION

RUN-OFF FROM ADJOINING LAND

Where adjoining land falls towards a road, and the road surface falls away from the road edge (superelevation or single crossfall), a channel profile is required to intercept:

• prolonged surface flow from a pervious landscaped area.

In this case, the length of channel flow to a catchpit must be limited by the capacity of the channel profile. It may be sufficient to design channel flow capacity for 50% AEP, where prolonged surface flow is the problem.

be suitable.

06

APPLICATION

COMBINED KERB

AND DRAIN BLOCKS

GRATED CHANNEL DRAINS

APPROVALS

Road drainage is managed jointly by Auckland Transport and Auckland Council. Approval is required from both organisations for any work affecting this system. In combined sewer areas, approval from Watercare is needed as well.

Combined kerb and drain block systems may be appropriate for flat or steep road edges. They can drain intersection areas where conventional kerb and channel would require catchpits that would be difficult to maintain safely. They can be used to drain areas that would pond due to vertical traffic calming features, with discharge either returned to road channel downstream of the feature or to a catchpit sump for connection to an outlet. Proprietary systems may be used subject to approval by AT Chief Engineer.

Grated channel drains or slot drains may be appropriate to drain some areas, especially flat areas with wide sheet flow, or to intercept surface flow to protect vulnerable property below the paved area. Channel or slot drains may only be used where areas cannot be laid to fall to surface channels or to spread-entry

18

In low-speed traffic and shared use areas, a channel may cross or be between expected vehicle movement tracks, subject to other design objectives.

Where a channel is within a large paved area subject to crossing by path users, a shallow V-shaped or trapezoidal channel may

If the acceptable width of channel flow is likely to exceed the capacity of the channel, capture by catchpits or grated channels should be considered.

• significant sheet flow from a wide paved area or

OTHER GUIDES Provision of kerbs and selection of kerb profile for traffic purposes should be as described in the Engineering Design Code -Urban and Rural Roadway Design.

Catchpits and continuous inlets

Catchpits are provided to drain the carriageway and to retain sediment or silt. Continuous inlets include combined kerb and drain blacks and grated channel drains.

treatment devices. (This could be due to trip hazards, excessive gradients, or excessive surface water in areas of heavy pedestrian activity.) Every channel or slot drain must discharge to a catchpit designed to suit that channel system.

TECHNICAL REQUIREMENTS

Catchpits used in all public roads must comply with this manual, including:

- All catchpits draining to combined networks must have a water-trap discharge to prevent odours from the combined sewer system escaping from the catchpit. This should generally be in the form of a half-siphon as shown in Standard Engineering Details.
- · All catchpits must include a silt trap sump of at least 450mm deep.
- Catchpits in town centres, or discharging directly to streams, public beaches or amenity water, including ponds and wetlands, must be fitted with approved gross pollutant traps.
- Catchpits discharging to soakage should include inserts to trap gross pollutants.

6.1 Catchpit location

BEST PLACEMENT

Catchpits should generally be located:

- At spacing determined by road surface drainage calculations, particularly for very flat or very steep gradients.
- In channels draining one lane, so that the water run in any channel is no longer than 90m, unless specific calculation is done.
- In channels draining two lanes, so that the water run in any channel is no longer than 60m, unless specific calculation is done.
- At sag points in road channel.
- Upstream of pedestrian and cycle crossings, at least 10m from the approach side of the crossing
- At raised tables.
- At least 10m from the kerb line tangent points, if the road falls to an intersection.
- At changes of gradient or direction in the channel, where there may be a tendency for water to leave the channel or to pond.
- At changes of crossfall, where significant flow will leave the channel and cross the roadway.
- Avoiding locations likely to conflict with future vehicle crossings.

For all above cases, the location should allow for safe operation when cleaning pits, and minimize traffic management requirements.

spacing may be increased, depending on residual bypass flow. Catchpits may not be needed at all pedestrian crossings.

INTEGRATED DESIGN Where devices for environmental management are provided, runoff exceeding the flow rate that must be captured for treatment may bypass inlets and continue as channel flow to a catchpit, located to capture 10% AEP maximum serviceability flow. Catchpit

6.2 Catchpit design

PRINCIPLE

DESIGN REQUIREMENTS

LOW POINTS IN ROAD

INLET CAPACITY

Catchpit inlets should be designed to intercept and convey all stormwater run-off from a minor drainage design storm, while limiting risk and degree of interference with traffic, safety risk and risk of flooding due to blockage.

Catchpits should be designed to provide for the safety of the public from being swept into the stormwater system. Openings must not pass an object greater than 100mm in its smallest dimension. Openings must be small enough to prevent entry of debris that would clog the stormwater system, or must include a screening element to protect the discharge pipe from debris.

Catchpits located on gradients must be designed for their inlet capture capacity, and any bypass flow must be added to the flow in the next sub-catchment.

A catchpit located at the lowest point in a sag vertical curve, or at the end of a cul-de-sac where water falls to the end, must be designed for a sump condition inlet with sufficient capacity to handle bypass flow that concentrates to that point and must allow for blockage. They must be either:

- Splay catchpits
- Street catchpits of 500x800mm.
- Megapit or

Where ponding would lead to road safety risk or property flood risk, consider a second catchpit and separate lead near the sag point.

Inlet capacity should be taken from manufacturers' or suppliers' data for approved types, or from verified testing of data for new types, or from approved design charts.

- Double standard catchpits

 Another pit type with sump inlet capacity that allows for sufficient flow, even with blockage.

• Standard Catchpit 460x675mm should be taken to have nominal inlet capacity of 28 l/s installed on a gradient.

• Corrections must be made for crossfall less than 3%.

· Nominal catchpit inlet capacity must be reduced to allow for partial blockage of the inlet as follows.

• Where existing catchpits are in good condition, and could be retained during rehabilitation or upgrade works, grate and back entry may be replaced with new items. Drainage design must be checked for inlet capacity and location in all works where existing catchpits might be retained, as current design run-off may exceed existing capacity. Increased inlet capacity may need to be provided.

• Inlet capacity may be limited by capacity of the downstream network. Where such limitations apply, design must show how serviceability standard can be met both short-term and with future capacity upgrade.

TABLE 5 ALLOWANCE FOR INLET BLOCKAGE

Location	Inlet type	Proportion of nominal capacity
Sag point	Kerb inlet	80%
	Grate	50%
	Combined	100% of kerb inlet only
	Continuous	100%
On-grade	Kerb inlet	80%
	Grate	50%
	Combined	90%
	Continuous	100%

Notes: Combined means a grate with kerb inlet or back entry. Continuous means a grated or slot channel or combined kerb drainage blocks with close-spaced inlets.

TABLE 6 TYPICAL USE OF CATCHPIT TYPES

Туре	Use
Semi-recessed	All catchpits with grates should be semi-recessed to ensure the channel lip line continues straight at apron, unless a recessed kerb line would create a hazard for footpath users.
Standard catchpit	Local streets and other locations where spacing is determined by factors that limit catchment to less than 28 l/s. Where kerbside bus or cycle use is likely, cycle-friendly grates and aprons must be used, which will reduce inlet capacity.
Street catchpit 500 x 800mm	Any street where channel flow can exceed inlet capacity of standard catchpit.
Grate only	Locations where a back entry cannot be provided, such as V-channel or Kassel kerb. Care is needed to provide for by-pass flow due to risk of blockage. Use should be avoided by locating catchpits where upstand kerb can be installed.
Splay pits and similar	Pits without grates may be used where semi-recessed pits would be hazardous to footpath users. These types of higher-capacity inlet can also be used with catchpit manholes, sized to suit the pipeline running from them. This can reduce the number of chambers and leads required in a drainage system.
Megapit or similar	High inlet capacity used where flood flows must be captured fully or partially to piped drain, to ensure overland flow does not exceed acceptable criteria.
Field catchpit	For use away from roadway, adjacent to footpaths or landscaped areas that cannot be drained otherwise.
Other types	Innovative designs should be discussed with Auckland Transport before being proposed.

6.3 Catchpit approved types

APPROVED DESIGNS

APPROVALS

Public catchpits for all new development must be selected from the approved catchpit designs in Table 6.

Catchpits of other types must be submitted to Auckland Transport Chief Engineer for type approval before they may be used. Where site conditions prevent one of the approved types being used without modification, the modified design must be approved by Auckland Transport before use.

CONTEXT

Catchpits must be selected with regard to the context for their use. Selection may be affected by site constraints and design inlet flow, including spacing related to the acceptable width of channel flow. Limitations on possible locations for connections to the network or discharge from road reserve may influence the location, and thus the type selected. Consider factors such as run-off from adjoining land, litter in public areas or debris from trees that may affect the type or location of effective catchpits. Choice of catchpit type may be affected by existing utility services, which may constrain where a pit may be installed.

Take care when sizing the outlet and designing the downstream network capacity of the stormwater pipe system, watercourse culverts or stormwater soakage system.

6.5 Catchpit inlet selection

APPROVED TYPES

Inlet weirs and grates should be selected from the types shown in EDC - Standard Engineering Details or the list of approved types kept by Auckland Transport. This section also covers grates and slots for channel drains.

CATCHPIT GRATES

Grates should be:

- flat topped;

Road drainage & surface water control

Figure 1 Semi-recessed catchpit

6.4 Catchpit selection criteria

New and replacement grates and frames must meet Auckland Council and Auckland Transport safety requirements.

- spring-latched;
- captive hinged;

• frame support allowing closure without clogging by debris.

CATCHPIT LINTELS	The standard concrete lintel for 675 x 450 mm catchpit has a limited capacity. If the inlet capacity required exceeds this, especially for an existing catchpit, the capacity can be increased by installing an extended concrete lintel, which may be effective on steep gradients, or a galvanised steel lintel.			Connections b other materials allowing for de be used from a to be used, wit finished or inst
	A mountable galvanised steel lintel may only be used with prior approval by AT Chief Engineer, usually at a vehicle crossing where the catchpit cannot be relocated clear of the crossing.	BENDS	0	If a catchpit leader of the length should used to allow u
CYCLES AND BUSES	Any catchpits on a road used by cyclists or buses close to the drainage channel line must be provided with cycle-friendly inlets. Where other catchpit types are used, the grate must be replaced by one that is approved by Auckland Transport. The apron must be reshaped to the same profile as the road and the frame must not be more than 5mm	OUTLET		Catchpit leads channel drain complying wit
	lintel may be appropriate.	07		Manho
	Where V-channel between traffic lane and parking lane occurs, a field catchpit with dished grate is acceptable if required for sub-catchment size, but only with cycle-friendly configuration.	DESIGN	0	The Design of CoP with the f
PEDESTRIANS	Any catchpits in locations with foot traffic (e.g. paths, plazas, shared use areas and pedestrian crossing areas) must be provided with pedestrian friendly inlets. Take care to avoid fall hazards with semi- recessed inlets, where the footpath is paved to the back of the kerb.	LOCATION OF COVERS		Manhole cove maintenance traffic manage access. Where berm or footp
	6.6 Catchpit leads			roadway shou wheel tracks i located in a po
MINIMUM DIAMETER	 All leads must be at least 225mm diameter, except as indicated below. Where catchpits are located at sag points in the road, leads must be at least 300mm diameter. 	LIDS	þ	traffic manage Hinged lids m
	Leads from certain devices specify minimum sizes larger than 225mm. This specified size will determine the minimum size of pipes downstream from that lead. Any proposed connection to a pipeline of smaller	CONSTRUCTION		opposite direct depth and velo
	diameter requires approval from the Auckland Council stormwater unit. Leads from some channel drains may be less than 225mm in diameter,	CONSTRUCTION	Ĭ	of backfill to a rigid to flexibl
	as shown on supplier design charts. Approval is needed to use smaller diameter leads. Consider their capacity, security against blockage, effects of blockage and ease of maintenance.	08		Rural
MAXIMUM LENGTH	Catchpit leads should not exceed 30m in length.			
CONNECTION	A catchpit lead should not normally connect to another catchpit. However, where pipe maintenance access for jetting is available from the inlet and subject to pipe capacity, it may connect to another catchpit lead, using a fabricated 90° or 135° junction.	URBAN ROADS		Rural drainage however these standard appl Chief Enginee
	Catchpit leads connecting to a piped stormwater network should normally be connected at a manhole. Where connection to a manhole	WATERCOURSES		Rural roads m existing land o may lie within
	would require an excessively long lead,			drainage conc
	 the gradient is insufficient, or the connection is difficult because of manhole integrity or 			Auckland Trar
	obstruction of the direct line,			 what disch
	a saddle or branch connection to the pipeline may be considered, subject to AC SW COP requirements.			what treatr

between concrete pipes or chambers and pipes of als must be designed and constructed to be watertight, deformation. For example, a concrete stub pipe may a concrete catchpit chamber to allow a flexible lead with a proprietary connector. All connections should be aspected from inside and outside of the pipe.

lead cannot be laid straight due to obstructions, its d not exceed 15m and large-radius bends should be v maintenance.

ds discharging to land, to a watercourse or to an open n must be provided with a suitable outlet structure *v*ith AC SW COP requirements.

oles

of manholes should be in accordance with the AC SW e following additions.

vers within the road reserve must be located so that e vehicles can get to them. Consider the temporary gement that will be required for maintenance ere possible, manholes must be located in the tpath. Where this is unavoidable, manholes in the buld be located within parking lanes, or between s in traffic lanes. Manholes at intersections must be position where there is safe access using economical gement.

must be installed to close in the direction of traffic Avoid placing hinged lids in a traffic lane in the ection to an overland flow path with significant elocity.

ithin the roadway require specific pavement design avoid differential settlement and load transfer from ble pavement foundation.

road drainage

ge features may be found within urban areas, ese are by exception only and a departure from plication must be made to and approved by the eer of Auckland Transport

must be designed with regard to topography and d drainage. An existing or diverted watercourse in or abutting the road reserve. If this is the case, a ncept must be agreed with the Auckland Council and ansport to determine:

road is to drain,

charge points or sheet flow may be considered, and atment may be required.

ROAD SAFETY	• The shape and location of the roadside drain must consider road safety. Preferred side slopes should be 1:6, with a 1.2m wide level base. Where this cannot be achieved, design must be as per Austroads Guide to Road Design Part 6. Steep-sided ditches, or deep channels will not be accepted within the clear zone of the road, unless a safety barrier is provided.	SEDIMENT	 Where road discharge, a consent or the dischar by an approx Vegetate
CAPACITY	 Adequate drainage channels must be formed, so that the design water level is below subgrade level. The capacity must meet requirements for serviceability design for the road. Where appropriate, Auckland Transport may require that the road drainage channel be enlarged to deal with the run-off from 10% AEP or 1% AEP events. The consequent sizing of vehicle crossing culverts will have to reflect this run-off. Particular provision may need to be made to reduce velocities and thereby minimise erosion within the channel and at cut-off inlets. 	09 WHERE NEEDED	and the A length cut-off p SUDS Piped subse
CUT-OFF	Adequate cut-off must be provided, so that the maximum length of the flow path in the road drainage channel does not exceed 200m. Table drain blocks within the channel downstream from a cut-off drain should be provided to ensure the flow is captured		may pond, natural sprin also happer will otherwi the berm. T
	by the cut-off drain. The cut-off must discharge to a natural watercourse, by way of an open drain along a lot boundary. Open drains through the	ROOTS	Where subs trees, unpe length of th
body of the lot will generally not be acceptable off drains through private property must be property must be properties affected. Where the easement is i.e. not an easement in gross, it must be a mind of allow for easy maintenance access. Where the easement is an easement in gross is the statement is an easement in gross.	body of the lot will generally not be acceptable. All such cut- off drains through private property must be protected by way of a drainage easement registered on the title of the property or properties affected. Where the easement is a specific one, i.e. not an easement in gross, it must be a minimum width of 3m to allow for easy maintenance access. Where discharge is	DOCUMENTATION	A CCTV ins arranged fo and disk/ta for the wor as-built dra with compl
	through a residential lot, all or part of its length may need to be piped. Access for outlet inspection and maintenance must be demonstrated.	OTHER GUIDES	 The princip Austroads Subsoil
GRADES	The minimum longitudinal grades of water tables must be 1:100 (1%). Where this may lead to unacceptably deep water tables, alternative options must be investigated and agreed with Auckland Transport.		 Design Transpo (Specifi
CONSENTS	 Relevant consent conditions from Auckland Council may require erosion and sediment control management to be demonstrated. 	10	Mino
EROSION	 All road discharges should be fitted with erosion protection measures. In steep terrain, stormwater fluming may be necessary. 	DEFINITION	Minor culv roads, with SWCoP Se
	Where the gradient of a roadside drain channel exceeds 5%, provision should be made for velocity control and erosion		dealt with Manual. Se
	and side slopes, or of providing check dams and stepped channel grades.	FISH PASSAGE	Culverts m as describe NPS-FM 20
	Auckland Transport may require drainage channels along the top of fill batters to control erosion. The road drainage channel must be designed to consider the whole of the contributory catchment.	LENGTH	A culvert of generally e boundarie the road re

dside drains discharge to a stream or coastal sediment control should be provided as per resource network consent conditions. If no specific controls for rge are set, then sediment control should be provided opriate device, e.g.:

ed channel, strip or swale between the road run-off point of discharge or run-off to the stream.

n of rock filter drain in the channel approaching the pipe or channel.

soil drains

oil drains must be provided at all locations where water or where groundwater may rise to the subgrade, e.g. ings or concentrated flow under steep roads. This can n near under-verticals or other areas where the footpath rise be exposed to wet sheet flow from groundwater in The road pavement design may require subsoil drains.

soil drains pass within the planned root growth zone of erforated pipes with sealed joints must be used for the he zone, unless otherwise protected by their design.

spection of completed underchannel drains must be or, after kerbs have been poured. The inspection log ape must be provided with completion documentation rk. If any underchannel drains cross a carriageway, an awing to 1:200 or 1:500 scale must be provided, along letion documentation for a record of their location.

bles of subsoil drainage design are detailed in Guide to Road Design Part 5.

drains should be as shown in RD025.

for subsoil drains must be as per New Zealand ort Agency (NZTA) specification F2:2013 ication and Notes).

or culverts

verts are those conveying storm water under th a cross sectional area less than 3.4m2. (Refer ection 4.3.9.8 for more details.) Major culverts are in the Structures chapter of the Transport Design see SWCoP for further design requirements.

nust comply with requirements for fish passage bed in Auckland Council TR 2013/018 and 2020.

A culvert conveying a watercourse under a roadway should generally extend so that inlet and outlet are outside the road boundaries. Where road embankment side slopes are within the road reserve, inlets and outlets must be at least outside the width of the level berm on approaches.

INLETS AND OUTLETS

The safety of all road users should be considered in designing inlets and outlets. Fencing around inlet/outlet structures is required unless it can be demonstrated that human access to the inlet/outlet structure is unlikely and/or the height of the structure is less than 1.0m.

Inlet or outlet structures must be provided with vehicle restraint protection as described in the Urban and Rural Roadway Design document of the Engineering Design Code.

If they are within the clear zone, inlet or outlet structures for pipes that cross roads should be sloped to match the drain or embankment slope. Pipes under side road intersections or driveways should have traversable ends if they are within the clear zone.

Inlets and outlets must be provided as per AC SW COP.

Culverts designed as part of the major drainage system,

design flow without significant bypass.

must have capacity for 1% AEP flow.

Culverts conveying run-off from roadside drains under the roadway or away from the roadway to discharge points as minor drainage, must be designed to provide capacity for at least 10% AEP flow. Inlets must be designed to capture this

CUT-OFF DRAINS

VEHICLE CROSSING CULVERTS

Where a vehicle crossing is to be constructed or redeveloped to cross a roadside drain or swale, and there is less than 200m of roadside drain upstream from the crossing without a cut-off drain, a crossing must be installed. Vehicle crossings paved to the profile of the swale is permitted where subsoil drainage prevents prolonged seepage flow across the crossing, and is required for swale capacity for 10% and 1% AEP run-off.

The minimum internal diameter of a vehicle crossing culvert is 300mm. Where the vehicle crossing crosses a stream or other natural water course then the minimum internal diameter for the culvert shall be as per the AC SWCoP. Culverts for vehicle crossings must also comply with requirements for fish passage as described in Auckland Council TR 2013/018 and NPS-FM 2020.

For any other roadside drain or watercourse, a crossing culvert pipe should be designed with a capacity of 20% AEP flow without exceeding the capacity of the upstream drain, and so that 10% AEP flow does not exceed the allowable channel flow width, or spill from the road boundary. Culvert capacity is to be determined for run-off from the Maximum Probable Development of land upstream.

11

APPLICATION

by case basis.

Designers must contact the Chief Engineer and Asset Management Group for advice on designing/implementing appropriate stormwater drainage in these areas.

OTHER INFORMATION

TDM | ENGINEERING DESIGN CODE

28

Special areas

Waiheke Island and other Hauraki Gulf Islands, together with the Waitakere Ranges have special requirements associated with stormwater drainage. The geography, the lack of reticulated services, bush cover and special legislation require that stormwater drainage is considered on a fit for purpose and case

Refer to Waitakere Ranges Heritage Area Act (2008) and the AT Waitakere Ranges Design Guide.